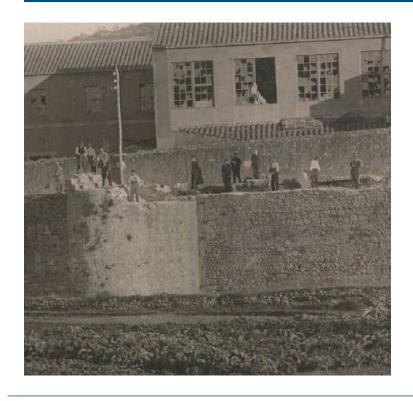

European Union's REKonstructed content in 3D to produce XR experiences

Scenario 1 – Virtual visualization of the Girona Historical Walls

The scenario: the medieval walls of Girona



The scenario: historical context

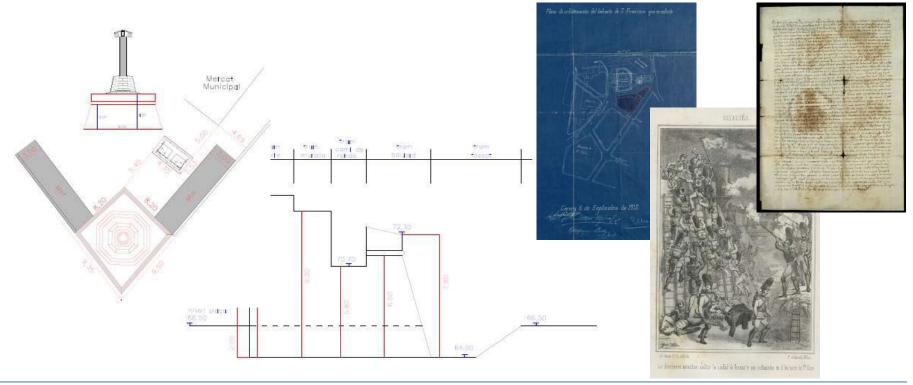
It has been **2,100 years** since the foundation of Girona by the Romans **(Gnaeus Pompey the Great, in 76 BC)**

- The medieval walls of Girona were built in the 15th century.
- The building of towers and bastions (16th- 17th century)
- The walls and all these elements were partly demolished at the beginning of the **20th Century**.
- The walls of the eastern side were kept, even if they were abandoned for many years.
- It was during the decade of the 1980's that the works carried out in different phases aimed to reuse a space for walking and enjoyment, more than carrying out an archaeological restoration.

Now, it's time for virtual reconstruction!

Challenge 1: scientific research

In the early 1990s, the **Urban History Research Group of Girona** was formed, with the aim of investigating the city's medieval past, especially its urban aspects, and of publishing these studies in a collection, edited by Girona City Council.

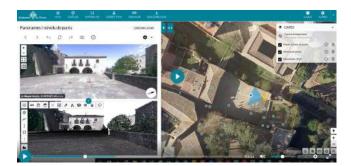


Challenge 2: records & data (engravings, photographs, audiovisuals, maps, text, ...)

Challenge 3: new images for textures

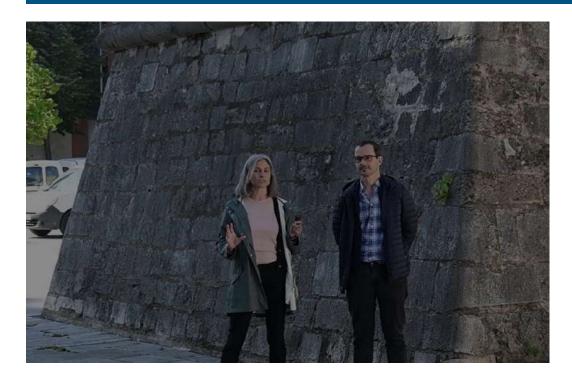
RED #10. Title: EXPOSURE VALUE
The photos should have a proper exposure value. Overexposed images lead to misinterpretation in 30 reconstruction by the Altool, it is recommended to use an ISO value between 100 and 400.

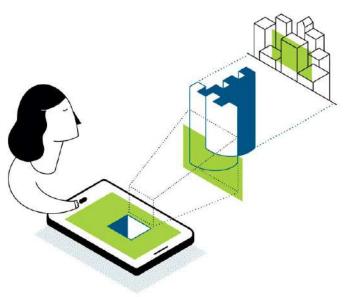
 Point #3. Name: Carrer de la Muralla LatLong Coordinates: 41°59'05.5"N 2°49'44.3"E



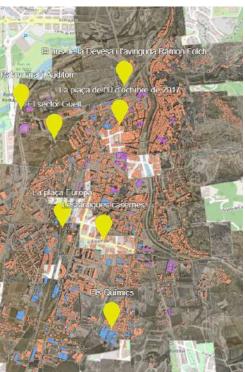
Name	FAJ6717.4.jpg
Resolution (px)	1417 x 914
Is blurry	Yes
Is coloured	No
Perspective	Тор
Perspective efficacy	1/5
Level of detail	1/5
Level of usability in Al	1/5
Reason for scoring Al	The image, although presumably representing a small portion of the wall, does not provide sufficient details for the reconstruction of the 3D model. Furthermore, the low resolution of the photo does not allow the details to be distinguished correctly.
Usability in design	1/5
Usability in validation	1/5

Challenge 4: aerial images





The XR experience



Girona City council plan for 3D visualisation

Many thanks for your attention!

EUreka3D – European Union's REKonstructed content in 3D to produce XR experiences

www.eureka3d-xr.eu

LinkedIn: <u>EUreka3D-XR</u> Instagram: <u>@EUreka3D_XR</u> YouTube: <u>@Eureka_3DXR</u>

X: @EUreka_3D

diglesias@ajgirona.cat

EUreka3D-XR Capacity Building Event

Brussels, september, 26 2025

Marco Pappalardo (marco.pappalardo@softwareengineering.it)

Marco Falciglia (marco.falciglia@softwareengineering.it)

Gian Paolo Donnarumma (gianpaolo.donnarumma@softwareengineering.it)

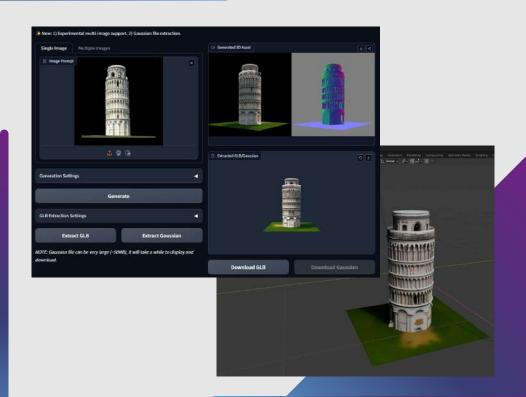
Francesco Generali (francesco.generali@softwareengineering.it)

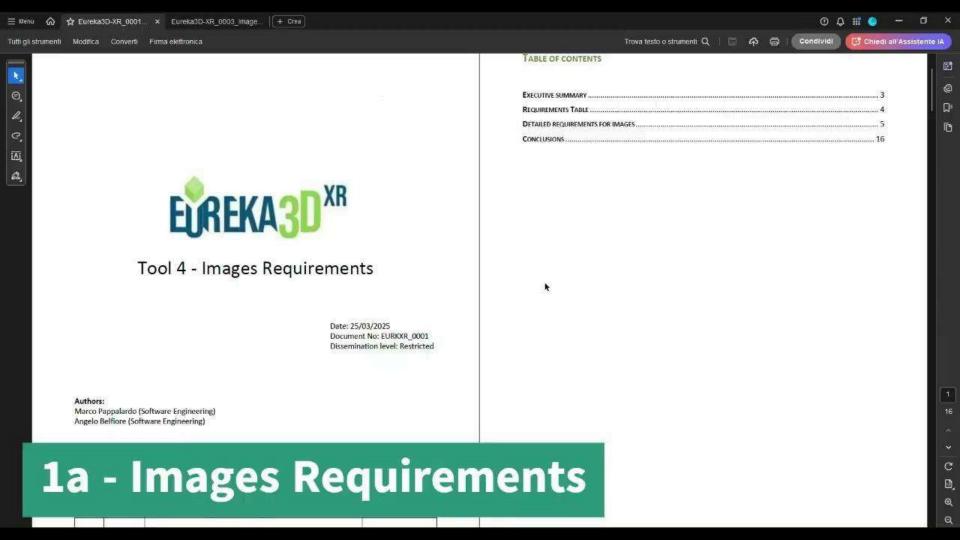
Angelo Belfiore (angelo.belfiore@softwareengineering.it)

Tools #3 AI 3D BUILDER Tools #4 3D XR STUDIO

Tool #3 AI 3D BUILDER

Development of an **Al-powered software pipeline** generating 3D models of objects




TRELLIS 3D AI

Microsoft Trellis as IMG-to-3D conversion Al model

Reasons:

- Free commercial MIT license
- Local deployment by using the API
- Tests showed encouraging quality
- Upload of multiple images

Tool #4 3D XR STUDIO

Creation of XR scenarios with 3D models, paths and interest points within a reference archaeological site.

3D XR Studio - Overview

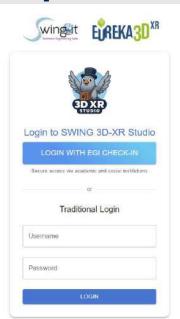
- The Swing:It 3D XR Studio is a dual-component system comprising
 - a web component
 - a mobile component.

Web Component

- Allows users to define XR experience areas by inputting coordinates
- Provides a 3D map to visualize existing structures.
- Enables import of 3D models
- Facilitates precise positioning of 3D models within the virtual environment by defining coordinates, orientation, and scale.

Mobile Component

- Used for on-site refinement of the virtual area and 3D model placement.
- Allows users to view virtual objects in extended reality by positioning their mobile device at a known reference point.
- Provides tools for precise selection, rotation, scaling, and repositioning of 3D models.


3D XR Studio – WebApp component

• Goal:

 Creating and editing 3D environments directly from the browser.

Key Functionality:

- Select areas and place 3D models on the map.
- Draw routes and Points of Interest (Pols).
- Export objects and scene to the 3D Studio XR mobile component for an immersive experience.

3D XR Studio – Frontend

- Intuitive and modern User Interface.
- Import and place 3D models on a map with just a few clicks.
- Define guided routes for tourists, instantly viewable on a map.
- Add Pols enriched with multimedia (audio, video, images, links) contents.

AR/XR app approach: Placement Without Anchors

This technique links 3D models positions on a real-world reference point established by the editor of the XR/AR experience.

It can also be possible to add special objects to manually create an occlusion effect.

Pros

- No dependency on external packages or APIs, completely free and customizable
- No need of environmental scans
- No need for continuous Internet connection or GPS
- High accuracy in positioning
- Objects visible from long distances, no relying on recognition patterns

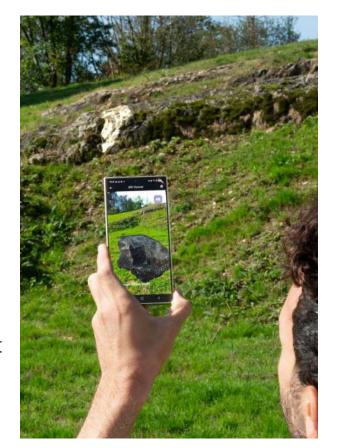
Cons

 The visitor must perfectly align the device with the initial position chosen by the editor

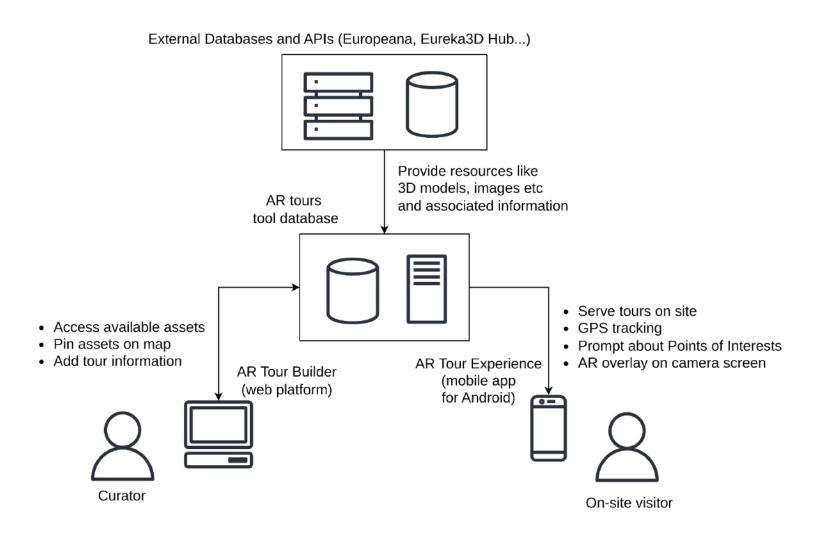
Thank You!

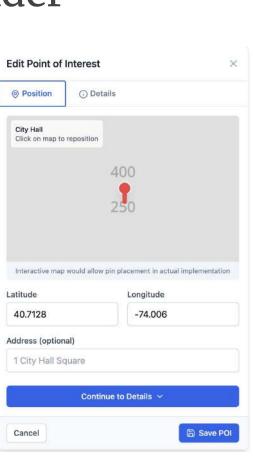
Creating AR tours: an application at the archaeological site of Bibracte

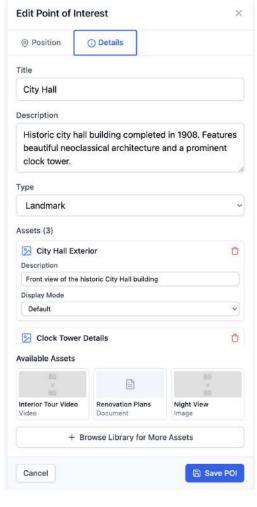
Eirini Kaldeli, NTUA


Agathe Le Riche-Maugis, BIBRACTE EPCC

Objectives


- Enable cultural heritage professionals to design AR narratives by contextualising collection items from existing repositories via an open and reusable web platform
- Serve carefully curated tours as lightweight, smartphone-driven AR experiences to on-site visitors based on their geolocation and preferences
- Test and evaluate the technical tools on the Bibracte archaeological site
- Design a tour scenario that employs AR to reveal what is no longer visible at the archaeological site
 - highlight the potential of the tools
 - serve as a case study for their further uptake


TOOLS



AR Tour Builder

- Frontend: React, ThreeJS, Google maps
- Backend: Django, Postgres

Eureka Tour Builder API OAS 3.0

/api/schema/

A comprehensive API for building and managing interactive tours with multilingual support,

Features

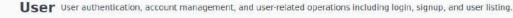
- · Project Management: Create and manage tour projects with group-based permissions
- . Tour Creation: Build interactive tours with customizable routes and content
- . POI Management: Manage Points of Interest with rich metadata and multilingual content
- · Asset Management: Handle media assets (images, videos, audio) with automatic thumbnail generation
- . User & Group Management: Role-based access control with personal and shared groups

Authentication

The API uses token-based authentication. Include your token in the Authorization header:

Authorization: Token your_token_here

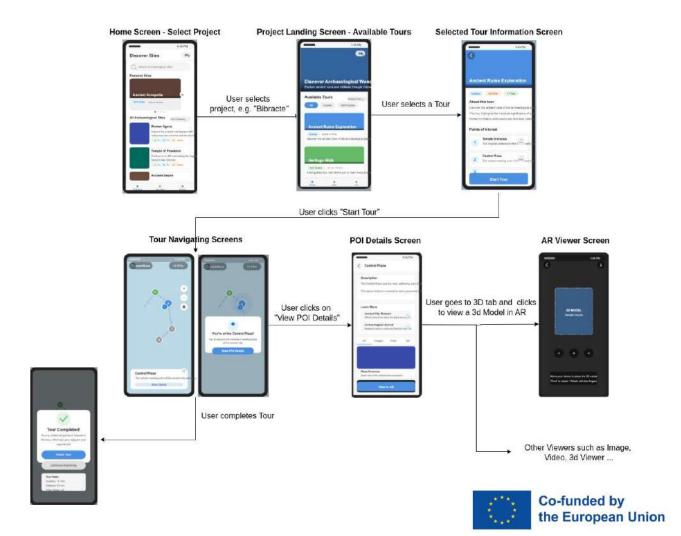
Data Format


All multilingual content is stored in JSON format, allowing for flexible language support.

POST /api/auth/login/ User Login

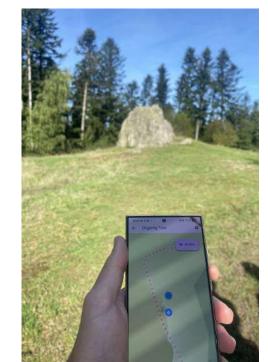
^

GET /api/auth/me/ Get Current User



POST /api/auth/signup/ User Signup

AR Tour Experience Main steps


- Flutter and ARCore
- OpenStreet maps
- GPS coordinates

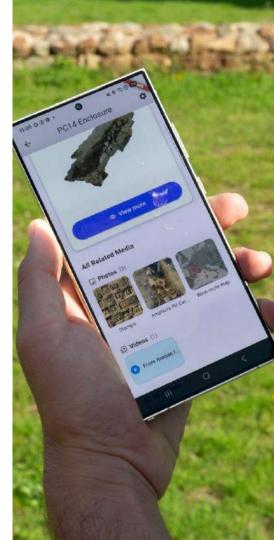
Navigation

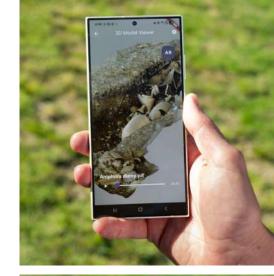
- OpenStreet maps
- Possibility to position other maps (e.g. LIDAR, historical maps) on top depending on context

Point of Interest

Multiple types of content associated with a certain location

- o 3D
- Audio
- Images and videos
- Textual documents
- Links to external content


Multilingual support



3D object visualisation

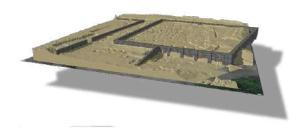
- Visualisation on 3D viewer (e.g. decorations and objects now preserved elsewhere, missing structures) manipulated via touch screen (zoom, rotation etc)
- Visualisation on AR viewer, i.e. overlay on the physical environment as captured by the mobile camera with view dependent on body motion (distance, angle etc)
 - Fixed anchoring based on georeferencing information for immovable heritage (e.g. backfilled excavations, missing parts of buildings)
 - Free positioning for movable heritage (e.g. see an artefact in the physical environment where it was discovered)

SCENARIO

Bibracte

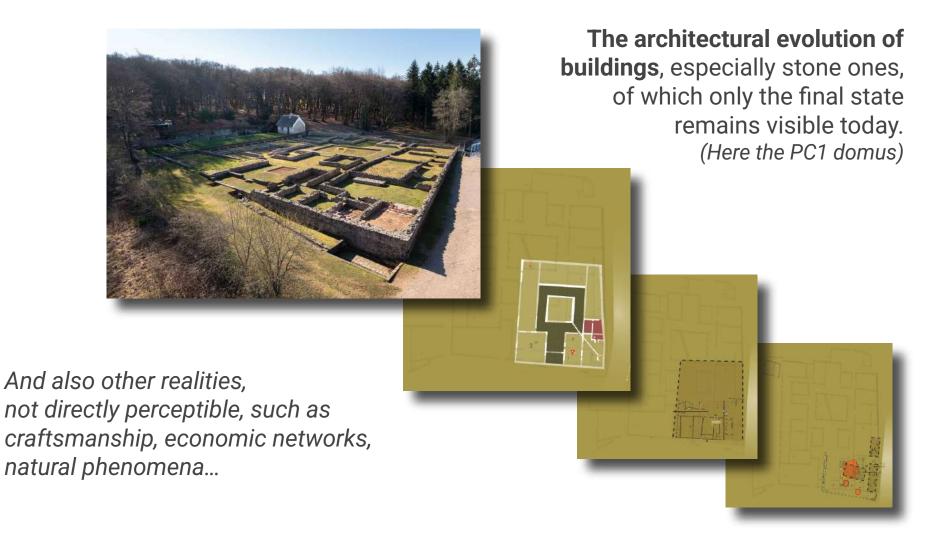
- The site of a Celtic town of the 1st century BC
- Since 1984, an integrated site management system and a research project shared by different European universities
- Around 100,000 people visit each year the site, with free access, but half do so without any guidance,
- However, while many artifacts are on display in the museum, very few remains are visible on site.

What is not, or no longer, visible today



Subtle remains of gallic wooden buildings (postholes, circulation levels, fireplace, etc.) destroyed during excavation process or backfilled afterwards. (Here Côme-Chaudron workshop)

Former excavated structures (cellars, mine shafts, etc.) filled to prevent them from collapsing and to protect visitors. (Here Theurot de la Roche Mine shaft).



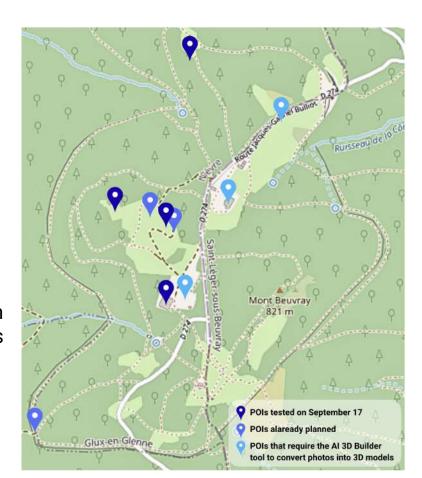
Reconstructed hypotheses of wooden building elevations, based on posthole plans that are now backfilled. (Here the PC15 Public space)

Our challenge is helping visitors visualize and understand these non visible realities through the AR tour "The Hidden Side of Bibracte"

The POIs selection is made on 3 criteria:

- Their potential to illustrate this "staging of the invisible,"
- The availability of 3D models.
- The existence of complementary and engaging media to showcase the full potential of the tools

The "Hidden side of Bibracte" tour and its POIs


Rock of the WivreSee the lost landscape

PC15 Public space Stand amid the missing building

Theurot de la Roche Explore the depths of a silver ore mine shaft

PC 2 domusSee Roman construction rise from its foundations

Great GatesWalk through the lost murus gallicus

Côme-Chaudron

Trace the spaces where bronze was crafted

Monumental center Stroll among a Romanized city

PC 14 enclosure

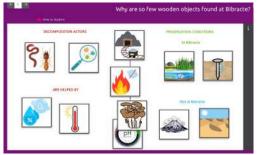
Glance into the amphora dump pit and wine trade

PC 14 well

Peer into the depths where wood survives time

PC 1 domus

Step inside the houses beneath the house


Specific cases: content and location

Past and present landscapes: historical photos appear only when visitors adopt the original viewing angle, enabling direct comparison with today's scenery.

Participatory experience: quizzes on Historiana (used here not as a space for dissemination but as part of a project deliverable) encourage engagement and exchange.

Sensitive POIs: sites that are very close or hard to access are managed with precise activation radius in the AR Tour Builder.

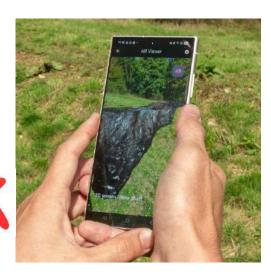
CHALLENGES & NEXT STEPS

Challenges

- Limited or no internet connection at remote places (AR tour experience)
 - Need to download parts of the tour in advance
- Inadequate georeferencing information for the exact positioning of 3D objects (AR tour experience)
 - Concrete instructions to curators
- Limited storage resources for hosting heavy content (AR tour builder)
 - Content hosted in CH repositories and only links added as tour metadata

Challenges

The 3D models of underground structures necessarily appear above ground, which is problematic for their proper understanding


Example of the Theurot de la Roche mine shaft:

Entrance of the mine shaft seen from above.

Complete structure of the mine shaft seen from the sides.

Display models when visitors approach them and hide them when they move away

Next steps

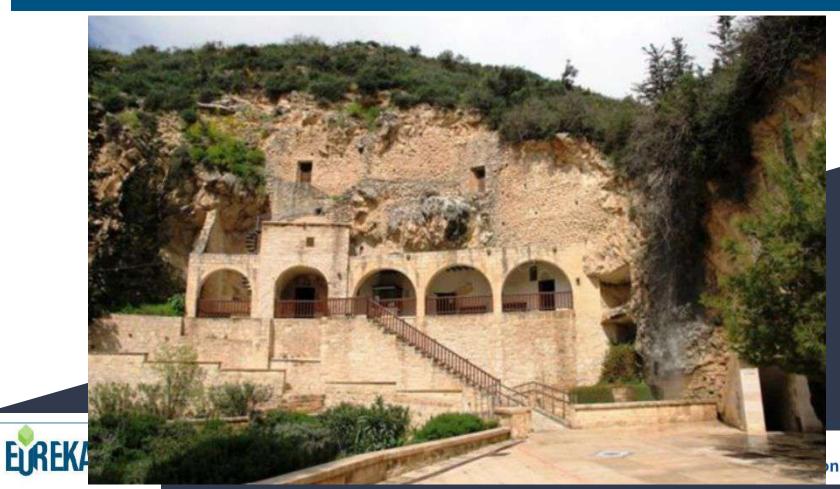
- Refine the AR tour experience app in light of feedback and testing at Bibracte
- Design the User Interface of the AR tour builder
- Test the tools in combination (online vs on-site)
- Complete the preparation of all content and information for the tour
- Iterative testing and evaluation on-site with stakeholders and then visitors

European Union's REKonstructed content in 3D to produce XR experiences

SCENARIO 3

The creation of a new virtual life of Saint Neophytos' Enkleistra in Cyprus

Marinos Ioannides and Drew Baker Cyprus University of Technology Nadia Thalmann and Nedjma Cadi-Yazli MiraLab, Geneva, Switzerland




Saint Neophytos Monastery's Enkleistra Location - Selection Criteria

Saint Neophytos Monastery's Enkleistra

Saint Neophytos the Recluse (1134 – ca.1214 AD)

lifetime. It is located inside the Enkleistra of the Saint.

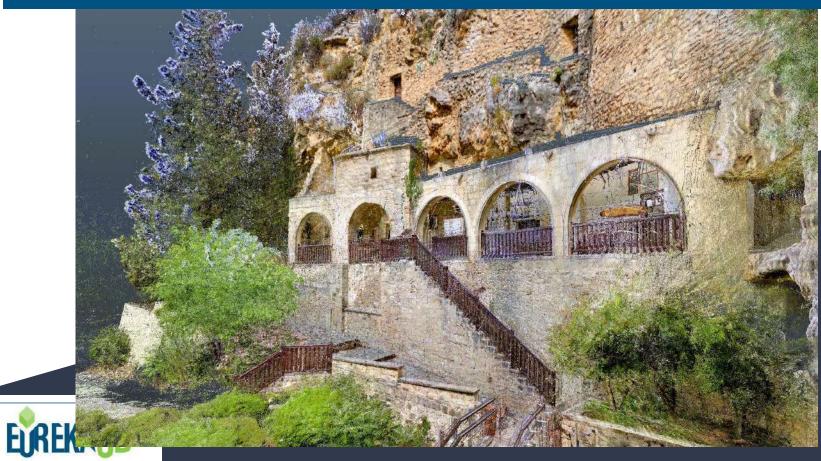
Saint Neophytos' Enkleistra: The intangible aspect

Saint Neophytos Monastery's (Hermitage) Enkleistra



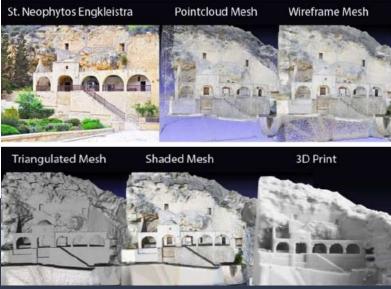
Interior of the Enkleistra

Cracks and Damaged Areas



Turning back time with EUreka3D-XR

Turning back time with EUreka3D-XR

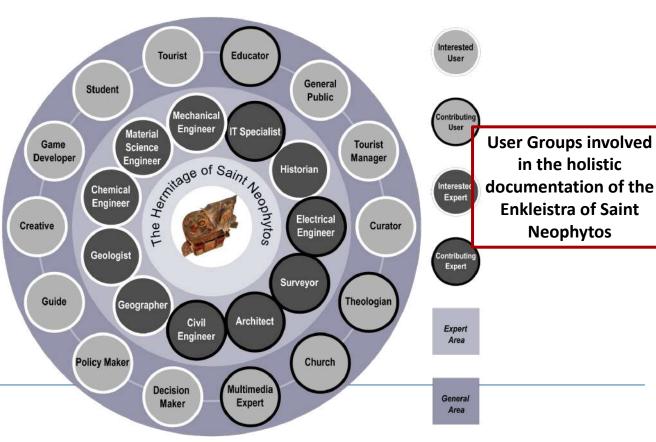

The Enkleistra's Digital Documentation

Geometric Documentation

Sections
Orthoimages
3D model

The Enkleistra's Digital Documentation: Data Acquisition

Digitising the Enkleistra using a terrestrial laser scanner


Exterior and interior 360° images of the Enkleistra

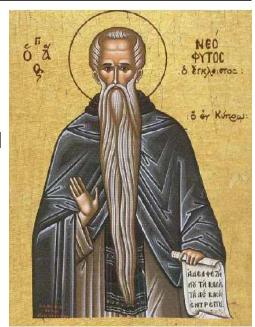
Digitising the Enkleistra using a UAV aerial Photogrammetry


The Enkleistra's Holistic Documentation: User Category Groups

The Enkleistra's Holistic Documentation: Complexity and Quality

Radial Charts
depicting the
parameters for
Complexity (left) and
Quality (right)
regarding the
Enkleistra of Saint of
Neophytos

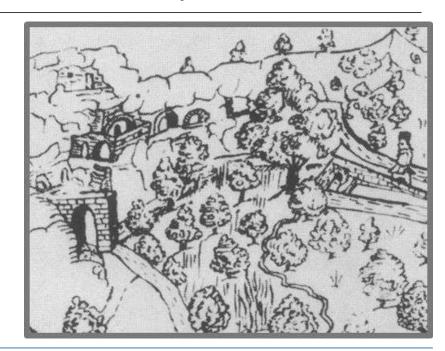
Turning back time with EUreka3D-XR



The Vision

Transport the viewer back to the time of St Neophytos

- Recreate the enkleistra (hermitage caves) to their state circa
 1214 AD
- Populate the enkleistra with digital representations of the monks
- Stage a partial recreation of St Neophytos' liturgy in the virtual space
- Enable the real monks to tell the history of the enkleista through their digital representations
- Allow the viewer to ask the digital St Neophytos questions about his life and times

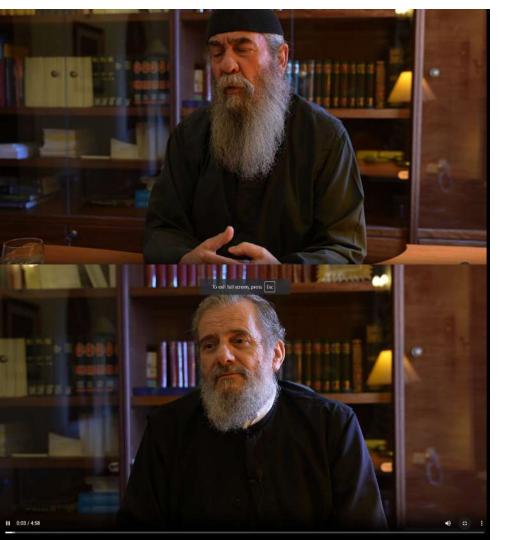


The Process

Reuse High-Quality MemoryTwin assets to create a new visitor experience

- Assess the current digital assets identifying relevant components to the narrative
- Directly engage the monastic community to tell the history of the saint and the religious community he founded
- Work to resolve visulisation challenges of restoring frescos, architectural elements and artifacts that are now absent
- Explore how far current technology can be used to create a sense of embodiment and emotions engagement with CH

The Purpose


To Extend the EUreka3D model into the Cross Reality Domain

- Provide access to the monument though XR implementation
- Develop new methods for exploring cultural heritage data (exploiting MemoryTwin repositories)
- Engaging communities in line with CARE principles
- Aligning dissemination to the ICOMOS
 Principles of Saville and the London Charter

Storytelling

The Work

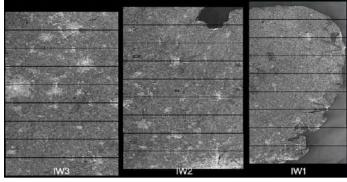
Scenario 3 - Cyprus: Saint Neophytos Englystra

Completed:

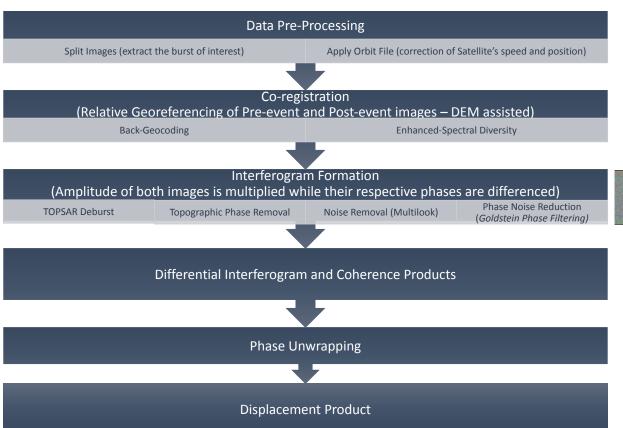
- Digitisation of the ca. 850 year old monument:
 - 1. Internal photogrammetry survey of the Englystra
 - 2. Internal terrestrial laser scanning of the Englystra
 - 3. External Simultaneous Localization and Mapping (SLAM) scanning of the monument
 - 4. External Unmanned Aerial Vehicle (UAV) photogrammetry survey of the monument
 - 5. Monument under Risk: Long-Term Monitoring (Satellite Monitoring)

Post-production

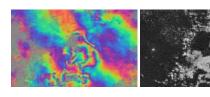
- 2. 3D Point cloud creation
- 3D mesh modelling asset creation
 The first unified holistic documentation of the monument under The Digital Cultural Heritage Research Centre MNEMOSYNE

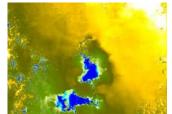

European Space Agency's Sentinel-1A and Sentinel-1B Interferometric SAR processing exploits the difference between the phase signals of repeated SAR acquisitions to analyze the shape and deformation of the Earth's surface

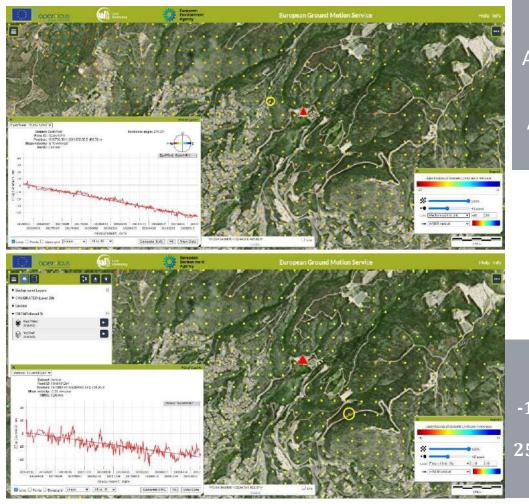
Days: 0 1 2 3 4 5 6


A word on Sentinel-1 Interferometric Wide Swath (IW) Mode

- Active Sensor
 - o **Transmits** a signal and **Measures** the reflected wave
- The Interferometric Wide (IW) swath mode is the main acquisition mode of Sentinel-1 for Land Applications such as:
 - Landslides, Earthquakes, Land Subsidence and deformation, Volcanic activity etc...
- Acquires data with a 250km swath at 5m x 20m spatial resolution (single look complex - SLC)
 - Level -1 SLC Data → Amplitude and Phase of the returned signal (mandatory data for Interferogram Formation).
- IW mode captures three sub-swaths using the Terrain Observation with Progressive Scans SAR (TOPSAR) acquisition principle




InSAR Processing Chain



Horizontal Displacement

Average of -8 mm per year is occurred at the location of the monastery

A total of -40 mm displacement west of the monastery in year 2021

Agios Neophytos Ionastery in Tala, Paphos

Vertical Displacement

Average of -3.2 mm per year
-16 mm displacement in year 2021 at the
location of the monastery
250 m near the monastery – top of the hill
= -20 mm in year 2021.

Turning back time with EUreka3D-XR

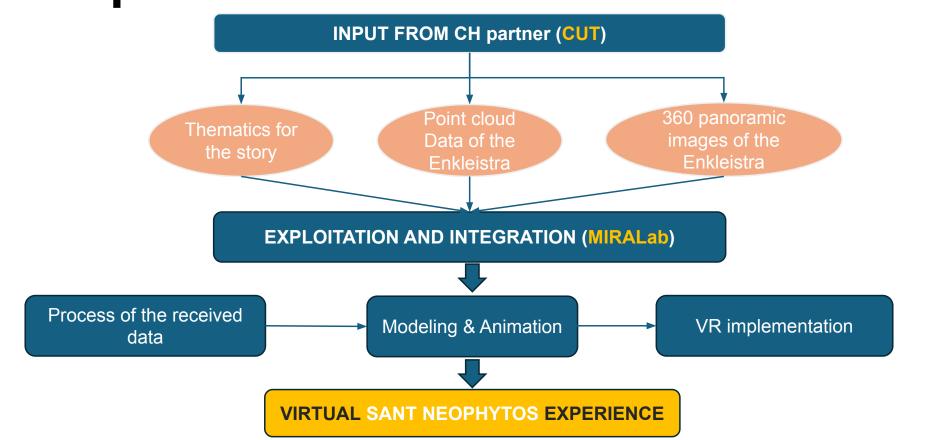
Virtual Saint Neophytos

Scenario 03

Prof. Nadia Magnenat-Thalmann
Nedjma Cadi
Dr. Thiago Freitas

The aim

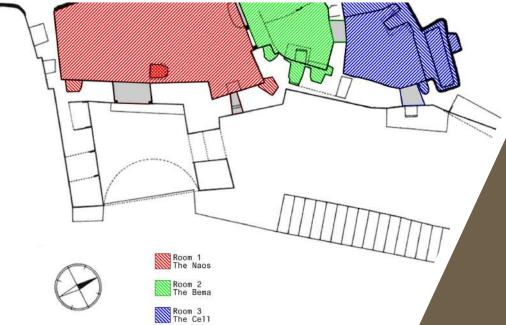
- Bringing a historical figure to Life in a Virtual Space and elevate the experience from passive visualization to immersive simulation
- How virtual humans can act as mediators of history



Main items

- The workflow (from partner's input → Al-generated text and sound → narration & Neophytos dialogue → virtual human).
- The added value of our tools: speech synthesis, facial animation, integration into Unity.
- How this workflow can be reused for other heritage sites.

From Historical Data to Virtual Experience



Historical Thematics for the Scenario

Construction
Decoration
Monastery Origins
Transformations After Death

From Data to Virtual Space different formats:

Point cloud files
360 pano images in HR
2D plan of the building

The 3D simulation pipeline (MIRALab)

The static 3D avatar

3D geometry and textures

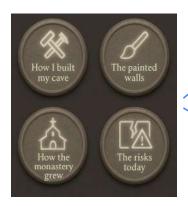
Body and facial animation

Body and facial animation, voice and storytelling

Storytelling

Text
Speech
Narrator
3D building
User
interface

The viewers



In Virtual reality/Mixed reality on the web

Dual Narrative Approach

Thematics

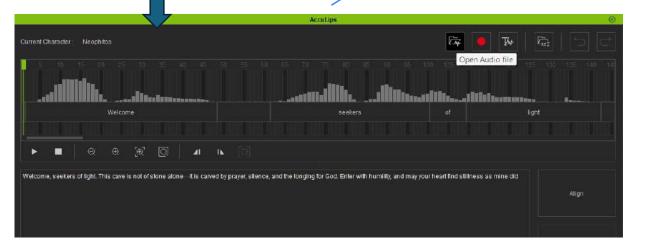
Al text generation

Narrator's voice (Contextualization)

spiritual voice is written in the first person for giving life to Neophytos

Background sounds (Enhance immersion)

Narrator introducing the Bema (one of the Room of the Enkleistra

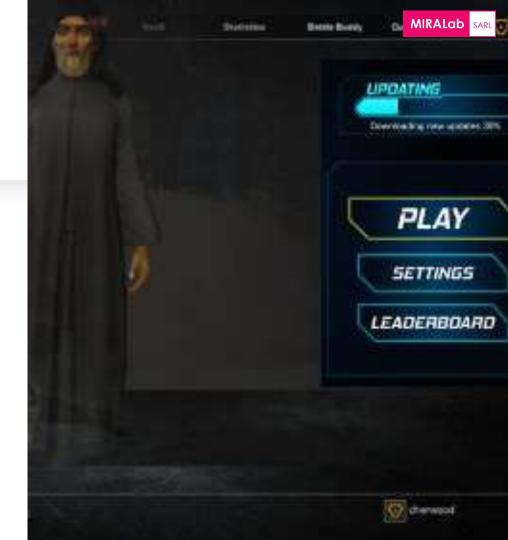

Neophytos talking about the decoration ofthis room

monastic chant, evoking the atmosphere of a monastery.

Text to Speech

From
Al-generated Text
and Sound

Exploit and integrate:
Making the Most of Point
Cloud Models



Virtual Saint Neophytos XR Simulation

- Multi-format immersive experience centered around Saint Neophytos and the Enklestra
 - The experience will be available in three distinct formats:
 - Web-Based Application
 - Mixed Reality (MR) Experience for Meta Quest 3
 - VR Experience for Meta Quest 3

Web-Based Application what the audience will see?

- **Technology:** Babylon.js (WebGL-based)
- Format: Browser-accessible simulation
- Features:
 - 3D animated Saint Neophytos appearing within a stylized 2D backdrop of the cave
 - Small GUI interface to interact with the scene and trigger dialogues or animations
 - Optimized for quick access and educational use on desktops and tablets

MR Experience with headset

what the audience will see?

- **Technology:** Unity (Mixed Reality for Android)
- Format: MR application with Saint Neophytos appearing in the user's physical space
- Features:
 - 3D animated Saint **Neophytos** integrated into the **real Enklestra**, using passthrough
 - Live interaction between the physical and virtual world
 - Interactive UI enabling user control over dialogues and actions

what the audience will see?

- **Technology**: Unity (Android build)
- Format: Fully immersive virtual reality experience
- Features:
 - 3D Virtual Enklestra, reconstructed using real panoramic images for spatial realism
 - 3D animated Saint Neophytos fades in at the beginning of the experience
 - Multiple speech sequences about his life, teachings, the Enklestra, and more
 - Interactive User Interface (UI):
 - Trigger dialogues or scenes
 - Navigate through the virtual environment
 - · Learn through contextual interaction

MIRALab Contribution

- Design a complete Al-driven storytelling pipeline:
 - Text → Audio → Facial Animation → VR integration
- Blended authentic scans with interpretive immersion
- Enabled museums to animate intangible heritage:
 - Voices, stories, and presence of historical figures

Value for Museums

- Accessible & engaging heritage experiences
- Reusable workflow for any site or artefact
- Institutions provide:
 - Topics / script
 - 3D scans or images
- We provide:
 - Virtual humans
 - Al voices & animation
 - VR Integration into immersive presentation tools

Many thanks for your attention!

EUreka3D – European Union's REKonstructed content in 3D to produce XR experiences

www.eureka3d-xr.eu

LinkedIn: <u>EUreka3D-XR</u> Instagram: <u>@EUreka3D_XR</u> YouTube: <u>@Eureka_3DXR</u>

X: @EUreka_3D

marinos.ioannides@cut.ac.cy cadi@miralab.ch

